SYNTHESIS OF N-METHYLMORPHOLINIUM 6-METHYL-4-(2-THIENYL)-5-PHENYLCARBAMOYL-3-CYANO-1,4-DIHYDRO-PYRIDINE-2-THIOLATE AND ITS REACTION WITH VARIOUS FUNCTIONALLY SUBSTITUTED METHYL HALIDES

V. D. Dyachenko, S. G. Krivokolysko, and V. P. Litvinov

Condensation of the anilide of acetoacetic acid, thiophene aldehyde, cyanothioacetamide and N-methyl-morpholine gave N-methylmorpholinium 6-methyl-4-(2-thienyl)-5-phenylcarbamoyl-3-cyano-1,4-dihydro-pyridine-2-thiolate which reacted with various halides ZCH_2 -thio or $2-H_2NCOCH(Ph)$ -thio-1,4-dihydropyridines.

Thienyl substituted 1,4-dihydropyridines are known to be pharmacologically active [1]. With the objective of preparing new biologically active compounds of this series we have developed a method for the synthesis of N-methylmorpholinium 6-methyl-4-(2-thienyl)-5-phenylcarbamoyl-3-cyano-1,4-dihydropyridine-2-thiolate (I) which involves a three component condensation of the anilide of acetoacetic acid (II), thiophene aldehyde (III) and cyanothioacetamide (IV) in ethanol at 20°C in the presence of N-methylmorpholine. When cyanoselenoacetamide (V) was used in place of compound IV the product was the selenone (VI) rather than the selenolate.

Reaction of salt (I) with the halides ZCH₂Hal (VIIa-t) and H₂NCOCH(Ph)Cl (VIII) gave the corresponding 2-thio-1,4-dihydropyridines substituted at the sulfur atom (IXa-t and X). The 4,7-dihydrothieno[2,3-b]pyridines (XIa and b) were prepared from compounds IXa and b under the conditions of the Thorpe-Ziegler synthesis.

Treatment of salt I with dilute hydrochloric acid converted it to the thione (XII) which reacted with 3-bromoacetylcourarin (VIIu) and 1-iodohexane (VIIv) in basic media to give the corresponding sulfides (XIIIa and b).

T. G. Shevchenko Lugansk State Pedagogical Institute, Lugansk 348011. N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 117913. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 666-671, May, 1997. Original article submitted September 9, 1996.

VII, IX, XI a Hal = Br, $Z = p\text{-ClC}_6H_4\text{CO}$; b Hal = Br, $Z = p\text{-BrC}_6H_4\text{NHCO}$; c Hal = Br, $Z = \text{CH}_2 = \text{CH}$; d Hal = Br, $Z = p\text{-ClC}_6H_4$; e Hal = Cl, Z = COOH; f Hal = Cl, Z = Ph; g Hal = I, $Z = \text{CH}_3(\text{CH}_2)_4$; h Hal = I, Z = Me; i Hal = Br, Z = Et; j Hal = I, Z = H; k Hal = Cl, Z = PhNHCO; l Hal = Br, 2-thienoyl; m Hal = Br, $Z = p\text{-BrC}_6H_4\text{CO}$; n Hal = Cl, Z = COOMe; o Hal = Cl, Z = COOEt; p Hal = Br, Z = PhCO; q Hal = Cl, $Z = \text{CONH}_2$; r Hal = Br, $Z = p\text{-MeC}_6H_4\text{CO}$; s Hal = Cl, Z = CN; t Hal = Cl, Z = A, VIIu, XIIIa Hal = Br, Z = B; VIIv, XIIIb Hal = I, $Z = \text{CH}_3(\text{CH}_2)_4$

The spectroscopic characteristics of compounds I, VI, IXa-t, X, XIa and b, XII and XIIIa and b confirmed their structures (see Table 1 and Experimental section). The IR spectra contain bands corresponding to a conjugated CN group at 2190-2220 and an NH group in the 3200-3350 cm⁻¹ region. The H NMR spectra contain singlets of the hydrogens of the dihydropyridine ring at 5.05-5.20 (CH) and 9.23-9.70 ppm (NH) as well as signals of hydrogen atoms of the substituents.

EXPERIMENTAL

IR spectra of Nujol mulls were recorded with an IRS-29 spectrometer, and ¹H NMR spectra of DMSO-D₆ solutions with TMS as internal standard were recorded with a Bruker WP-100 SY (10 MHz) instrument.

Characteristics of the compounds synthesized are presented in Table 2.

N-Methylmorpholinium 6-Methyl-4-(2-thienyl)-5-phenylcarbamoyl-3-cyano-1,4-dihydropyridine-2-thiolate (I). A mixture of anilide II (1.77 g, 10 mmol), aldehyde III (1.12 g, 10 mmol), cyanothioacetamide IV (1.00 g, 10 mmol) and N-methylmorpholine (1.51 g, 15 mmol) in ethanol (20 cm³) was stirred at 20°C for 6 h. The precipitate of compound I was filtered off and washed with ethanol and acetone. Yield 3.54 g (78%). mp 142-144°C. IR spectrum: 3255 (NH), 2190 (CN), 1650 cm $^{-1}$ (CONH). 1 H NMR spectrum: 9.24 (1 H, s, CONH), 8.09 (1 H, br. s., NH), 6.70-7.58 (8 H, m, H_{arom}), 4.89 (1 H, s, 4-H), 3.76 (4 H, m, CH₂OCH₂, 3.09 (4 H, m, CH₂NCH₂), 2.72 (3 H, s, NCH₃), 2.07 ppm (3 H, s, 6-CH₃). Found, %: C 60.88, H 5.59, N 12.41, S 14.24. $C_{18}H_{15}N_{3}OS_{2}\cdot C_{5}H_{11}NO$. Calculated, %: C 60.77, H 5.76, N 12.32, S 14.11.

6-Methyl-4-(2-thienyl)-5-phenylcarbamoyl-3-cyanopyridine-2(1H)-selenone (VI). A suspension of anilide II (1.77 g, 10 mmol), aldehyde III (1.12 g, 10 mmol), cyanoselenoacetamide V (1.47 g, 10 mmol) and N-methylmorpholine (1.51 g, 15 mmol) in absolute ethanol (20 cm³) was stirred for 6 h at 20°C in an atmosphere of argon after which the pH was adjusted to 3 by addition of 10% aqueous hydrochloric acid. The precipitate was filtered off and washed with ethanol and hexane togive VI (2.83 g, 71%), mp 284-286°C. IR spectrum: 3210 (NH), 2220 (CN), 1650 cm⁻¹ (CONH). ¹H NMR spectrum: 10.63 (1 H, s, CONH), 7.00-7.85 (8 H, m, H_{arom}), 2.60 ppm (3 H, s, CH₃). Found, %: C 54.11, H 3.08, N 10.64, S 8.16. C₁₈H₁₃N₃OSSe. Calculated, %: C 54.27, H 3.29, N 10.55, S 8.05.

TABLE 1. ¹H NMR Spectra and IR Spectra of Compounds IXa-t, X and XIIIa and b

	Suc				10 m (CH-)													
	other protons	и	į	. (HN) s 02'6	5,20 m (CH ₂ -); 5,80 m (CH-)	!	!	!	0,86 t (CH ₃);	1,23 ((CH ₂),4/	(112) - 12(1	0,97 t (CH ₃); 1,57 m (CH ₂)	!	10,39 s (CONH)	į	!	3,63 s (OCH ₃)	4,04 m (OCH ₂); 1,18 t (CH ₃)
, ppm ,	H _{arom} , m	OT	6,808,01	6,867,57	6,807,57	6,667,70	6,757,52	6,677,56	6,807,57	827 273	0011010	6,807,57	6,807,70	6,877,59	8,07 T; 6,807,56	6,807,92	6,807,55	6,917,54
¹ H NMR spectrum, δ, ppm	гнэѕ	6	4,76 s	3,96 s	3'69 ш	4,30 s	4,01 s	4,30 d	3,02 m	3 03 1		2,99 m	2,52 s	3,98 s	4,65 s	4,75 s	3,96 s	4,04 m
¹ H NMR	4-H, S	8	5,10	5,12	5,09	2,06	5,09	5.04	5,09	2 10	2	5,10	5,05	5,14	5,10	5,09	5,09	5,12
	CONH, S	7	. 19'6	10,50	6,67	6,67	10,60	9,64	99'6	0 0		89'6	89'6	9,70	69'6	6,67	6,67	89'6
	NH, S	6	9,26	9,57	9,28	6,39	69'6	9,36	9,30	0 31		6,30	9,23	9,65	9,30	72,6	62'6	9,33
	6-CH3, S	5	2,09	2,10	2,10	2,13	2,06	2,11	2,09	2,09		2,09	2,10	2,11	2,07	2,08	2,06	2,10
IR spectra, v, cm ⁻¹	CONH	+	1674	1654	1670	1662	1650	1650	1675	1650		1677	1644	1655	1660	1688	1650	1650
	CN	3	2200	2205	2200	2190	2218	2190	2218	2220		2204	2195	2218	2204	2210	2220	2200
	HN	2	3300	3272	3330	3210	3300	3330	3335	3378		3264	3328	3330	3295	3315	3300	3300
Compound		1	ΙΧ̈́a	ıxp	IXc	p XI	IXe	IXe	1X g	1X h	: :	×	ΙΧΊ	IXk	IXI	IXm	IXu	0 XI

TABLE 1 (continued)

	II	IR spectra, v, cm ⁻¹	n-1				¹ H NMR	¹ H NMR spectrum, 8, ppm	, ppm	- 1
	풀	3	CONH	6-CH3, S	NH, S	CONH, S	4-H, S	SCH2	H _{arom} , m	other protons
1	2	3	4	5	9	7	80	6	01	11
dΧI	3270	2190	1660	2,10	9,25	79'6	5,11	4,82 s	6,808,02	ļ
ЬXI	3375	2190	1684	2,11	29,67	10,12	5,12	3,72 d	6,807,57	7,91 br. s (NH ₂)
IXr	3280	2205	1650	2,08	9,26	89'6	2,08	4,77	6,859,70	2,37 s (CH ₃)
sxı	3314	2222,	1682	2,11	9,49	9,76	5,20	4,27 s	6,917,58	!
ıxı	3284	2192	1648	2,16	05'6	99'6	5,17	4,39 t	6,858,10	4,39 t (CH ₂ N); 1,47 s ((CH ₃) ₃)
×	3300	2190	1670	2,04	65'6	10,55	5,03	5,34 s	6,477,70	7,95 br. s (NH ₂)
XIIIa	į	2222	1675	2,36	_!	10,53	ļ	4,89 s	8,77 s; 7,008,10	!
XIIIb	ļ	2217	1650	2,58	ļ	10,54	ļ	3,31 t	7,007,60; 7,79 d	0,87 t (CH ₃), 1,341,71 m ((CH ₂) ₄)

*Signal overlap.

TABLE 2. Characteristics of the Synthesized Compounds IXa-t, X and XIa and b

				d, %)/	mp, °C		
Compound Molecular formula			(Calcu	lated, %)	(solvent for	Yield, %	
		С	н	N	S	crystallization)	
IXa	C ₂₆ H ₂₀ ClN ₃ O ₂ S ₂	61.60 61,71	4.15 3,98	8.41 8,30	12.54 12,67	200202 (AcOH)	74
IXb	C26H21BrN4O2S2	<u>55.15</u> 55,22	3.80 3,74	10.01 9,91	11.19 11,34	248250 (1-butanol)	68
IXc	C21H13N3OS2	<u>63.88</u> 64,09	4.90 4,87	10.55 10,68	16,41 16,30	110112 (ethanol	69
IXd	C ₂₅ H ₂₀ ClN ₃ OS ₂	62.73 62,81	4.11 4,22	8.88 8,79	13.50 13,41	164166 (1-butanol)	78
IX e	C20H17N3O3S2	<u>58.42</u> 58,38	4.20 4,16	10.01 10,21	1 <u>5.69</u> 15,58	178180 (AcOH)	72
IXf	C25H21N3OS2	<u>67.80</u> 67,69	4,59 4,77	9.30 9,47	14,54 14,46	177179 ethanol	78
IXg	C24H27N3OS2	65,92 65,87	6.33 6,22	9 <u>.54</u> 9,60	14.51 14,65	112114 ethanol	71
IXh	C20H19N3OS2	63.11 62,96	4.90 5,02	10.88 11,01	1 <u>6.92</u> 16,81	124126 ethanol	86
IXi	C ₂₁ H ₂₁ N ₃ OS ₂	<u>63.59</u> 63,77	<u>5.42</u> 5,35	10.70 10,62	16,12 16,21	160162 ethanol	83
IX j	C19H17N3OS2	61.95 62,10	4.70 4,66	11.29 11,43	17.50 17,45	174176 methanol	72
IX k	C26H22N4O2S2	64.02 64,18	4.62 4,56	11.43 11.51	13.07 13,18	250252 (1-butanol)	73
IX i	C24H19N3O2S3	60.11 60,35	3.92 4,01	8.94 8,80	20,20 20,14	186188 (1-butanol-)	80
IXm	C ₂₆ H ₂₀ BrN ₃ O ₂ S ₂	<u>56.60</u> 56,73	3.58 3,66	7.72 7,63	11.59 11,65	182184 (1-butanol)	86
IX n	C21H19N3O3S2	<u>59,33</u> 59,27	4.41 4,50	10.00 9,88	14.86 15,07	182184 ethanol	69
IX o	C22H21N3O3S2	<u>59.98</u> 60,12	<u>4.76</u> 4,82	<u>9,65</u> 9,56	14.70 14,59	126128 ethanol	78
IX p	C26H21N3O2S2	66.11 66,22	4.60 4,49	9 <u>.03</u> 8,91	13.54 13,60	185187 (AcOH)	77
IX q	C20H18N4O2S2	<u>58,40</u> 58,52	<u>4.31</u> 4,42	13.78 13,65	15.80 15,62	250252 (1-butanol)	76
IX r	C27H23N3O2S2	66,66 66,78	<u>4.84</u> 4,77	8.72 8,65	13.15 13,21	189191 ethanol	73
IX s	C ₂₀ H ₁₆ N ₄ OS ₂	61.11 61,20	4.20 4,11	14.33 14,27	16.28 16,34	190192 ethanol	82
IX t	C32H31N5O2S2	66,20 66,07	<u>5,42</u> 5,37	11 <u>.95</u> 12,04	10.88 11,02	216218 (1-butanol)	77
x	C26H22N4O2S2	64.04 64,18	4,39 4,56	11.68 11,51	13.30 13,18	189191 (1-butanol:)	70
XIII a	C29H19N3O4S2	64.8 <u>5</u> 64,79	3.49 3,56	7.77 7,82	12,05 11,93	224226 (DMF.)	78
XIIIb	C24H25N3OS2	66,29 66,17	<u>5.60</u> 5,78	9, <u>54</u> 9,65	14.89 14,72	118120 ethanol	74

6-Methyl-2-Z-methylthio-4-(2-thienyl)-5-phenylcarbamoyl-3-cyano-1,4-dihydropyridines (IXa-t, X). 10 mmol of the halides VII or VIII were added with stirring to a suspension of the salt I (4.55 g, 10 mmol) in ethanol (20 cm³), the reaction mixture was stirred for 4 h and then diluted with water (10 cm³). The precipitated product was filtered off and washed with water, ethanol, and hexane.

3-Amino-6-methyl-4-(2-thienyl)-5-phenylcarbamoyl-2-(4-chlorobenzoyl)-4,7-dihydrothieno[2,3-b]pyridine (XIa). Potassium hydroxide (5.6 cm³, 10 mmol, 10% aqueous solution) was added with stirring to a solution of compound IXa (5 g, 10 mmol) in DMF (15 cm³), the mixture was stirred for 6 h and then diluted with water (10 cm³). The precipitate was filtered off and washed with water, ethanol, and hexane to give compound XIa (3.64 g, 72%). mp 134-136°C. IR spectrum: 3190-3385 (NH, NH₂), 1665 cm⁻¹ (CONH). ¹H NMR spectrum: 10.44 (1 H, br s, CONH), 9.60 (1 H, br s, NH), 6.80 (2 H, br. s, NH₂), 7.10-7.92 (12 H, m, H_{arom}), 5.55 (1 H, s, 4-H), 2.10 ppm (3 H, s, CH₃). Found, %: C 61.80, H 4.12, N 8.19, S 12.70. C₂₆H₂₀ClN₃O₂S₂. Calculated, %: C 61.71, H 3.98, N 8.30, S 12.67.

3-Amino-2-(4-bromophenylcarbamoyl)-6-methyl-4-(2-thienyl)-5-phenylcarbamoyl-4,7-dihydrothieno[2,3-b]pyridine (XIb). Product XIb was prepared as described above for compound XIa. Yield 3.83 g (68%). mp 248-250°C (1-butanol). IR spectrum: 3210-3450 (NH, NH₂), 1680 cm⁻¹ (CONH). ¹H NMR spectrum: 10.46 (1 H, s, 5-CONH), 9.58 (1 H, s, 2-CONH), 9.00 (1 H, s, NH), 6.54-7.75 (12 H, m, H_{arom}), 6.04 (2 H, br. s, NH₂), 5.54 (1 H, s, 4-H), 2.15 ppm (3 H, s, CH₃). Found, %: C 55.49, H 3.33, N 10.02, S 11.19. C₂₆H₂₁BrN₄O₂S₂. Calculated, %: C 55.22, H 3.74, N 9.91, S 11.34.

6-Methyl-4-(2-thieno)-5-phenylcarbamoyl-3-cyanopyridine-2(1H)-thione (XII). (10%) Aqueous hydrochloric acid was added with stirring to a suspension of salt I (4.55 g 10 mmol) in ethanol (15 cm³) until the pH reached 3 and the solution was filtered. The precipitate of compound XII which developed over 24 h was separated and washed with ethanol and hexane to give a yield of 2.53 g (72%). mp 301-303°C. IR spectrum: 3305 (NH), 2220 (CN), 1650 cm⁻¹ (CONH). ¹H NMR spectrum: 14.36 (1 H, s, NH), 10.42 (1 H, s, CONH), 7.00-7.83 (8 H, m, H_{arom}), 2.45 (3 H, s, CH₃). Found, %: C 61.66, H 3.81, N 11.85, S 18.10. C₁₈H₁₃N₃OS₂. Calculated, %: C 61.52, H 3.73, N 11.96, S 18.25.

2-ZCH₂-6-methyl-4-(2-thienyl)-5-phenylcarbamoyl-3-cyanopyridines (XIIIa and b). To a suspension of thione XII (3.51 g, 10 mmol)in DMF (10 cm³) 10% aqueous KOH (5.6 cm³, 10 mmol) was added with stirring and then 10 mmol of the corresponding halide VII was added in 1 min. The mixture was then stirred for 4 h and diluted with water (10 cm³). The precipitated product was filtered off and washed with water, ethanol, and hexane.

This work was supported financially by a grant from RFFI (project No. 96-03032012a).

REFERENCES

1. V. V. Kastron, R. O. Vitolinya, and G. Ya. Dubur. Khim-Farm. Zh., No. 6, 14 (1990).